
1 3

Theor Appl Genet (2014) 127:1753–1770
DOI 10.1007/s00122-014-2337-4

Original Paper

Whole‑genome QTL analysis for MAGIC
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into the analysis. Here, we present a method for QTL 
analysis that utilizes the probability of inheriting founder 
alleles across the whole genome simultaneously, either for 
intervals or markers. The probabilities can be found using 
three-point or Hidden Markov Model (HMM) methods. 
This whole-genome approach is evaluated in a simulation 
study and it is shown to be a powerful method of analy-
sis. The HMM probabilities lead to low rates of false posi-
tives and low bias of estimated QTL effect sizes. An imple-
mentation of the approach is available as an R package. In 
addition, we illustrate the approach using a bread wheat 
MAGIC population.

Introduction

Food security is a major challenge facing the human popu-
lation. Essential to feeding the world’s growing population 
is an increase in agricultural productivity under ever-chang-
ing environmental conditions. Critically important is the 
ability to identify and produce crops with improved qual-
ity and yield attributes along with robust disease resistance 
and broad adaptability in a changing climate. For decades, 
bi-parental populations have been the mainstay in identi-
fying quantitative trait loci (QTL), which is the first stage 
in quantifying genes and gene pathways responsible for 
these economically important traits. However, the restricted 
nature of such populations has meant that identified QTL 
can generally only be mapped to wide genomic regions and 
have not been able to produce the results desired in breed-
ing programs. Conversely, using breeding populations to 
identify QTL is also not ideal. The increased complexity 
can introduce difficulties including unknown population 
structures, thereby distorting the relationships between 
markers and trait when applying association mapping.
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Recently, the generation of multi-parent advanced gen-
eration integrated cross (MAGIC) populations has provided 
an additional option for QTL mapping; this overcomes 
the complexity of a breeding program, while not being 
constrained by the limitations of bi-parental populations. 
MAGIC was first described by Mott et al. (2000), and was 
used for fine-mapping QTL in heterogeneous mice stock 
generated from an eight-way cross of diverse strains (HS). 
Another mice population, the collaborative cross (CC) 
(Threadgill et al. 2002), was established in 2002, also using 
an eight-way cross. Cavanagh et al. (2008) first discussed 
the potential of MAGIC in crops. MAGIC populations pro-
vide the ability to capture large proportions of the genetic 
diversity present in a population through the selection of 
diverse founder lines, ideally increasing the number of 
QTL segregating in the cross. The founder lines in a clas-
sic MAGIC population are inter-crossed (generally for nf/2 
generations where nf is the number of founder lines) until 
all founders have an equal probability of contributing to the 
genetic makeup of a line. This is followed by multiple gen-
erations of selfing to create recombinant inbred lines. Such 
a structure leads to an amplified number of recombination 
events which increases the mapping resolution of detected 
QTL. Note that more complex inter-crossing patterns can 
be used, but the methods developed in this paper are for the 
classic MAGIC design.

In plants, many populations are being developed across a 
wide range of species. In durum wheat, Trebbi et al. (2008) 
report on the development of a 4-way population, while 
Huang et al. (2012) describe the two MAGIC populations 
developed in wheat. MAGIC populations have also been 
generated for Arabidopsis thaliana (Kover et al. 2009) and 
rice (Bandillo et al. 2013) with the purpose of fine-mapping 
QTL in these species. A review of integrated crosses is pro-
vided by Rakshit et al. (2012).

Developing methods of analysis that utilizes the 
additional information available in a MAGIC popula-
tion is essential to maximize the usefulness of such a 
resource. QTL analysis for MAGIC populations was ini-
tially discussed by Xu (1996) who uses an interval map-
ping approach on marker scores for a four-way cross. The 
regression method (Haley and Knott 1992) was the basis 
for this analysis. However, Mott et al. (2000) demonstrate 
that simple marker regression using marker scores fails 
in the CC population and describes a multi-point method 
(known as HAPPY). This method begins by constructing 
the probabilities that an allele has been inherited from the 
founders, which is an alternative to the marker scores, that 
is made possible through the population structure of the 
MAGIC population (see Fig. 1). This can provide valuable 
information as marker genotypes may not be fully informa-
tive with multiple founders. The probabilities that a marker 
has come from each founder are then used to identify QTL 

and to establish the size of the QTL for each founder allele. 
Mott et al. (2000) utilize a Hidden Markov Model (HMM), 
also described in Broman (2006), to calculate the founder 
probabilities at each interval. Additional aspects of the 
multi-point method are considered by Valdar et al. (2006a) 
and Valdar et al. (2006b), including the potential power of 
the method in a MAGIC population and approaches for the 
determination of thresholds.

Kover et al. (2009) extend the work of Mott et al. (2000), 
Valdar et al. (2006a) and Valdar et al. (2006b) by develop-
ing three methods for QTL analysis and then applying the 
methods to data on Arabidopsis thaliana. The first method 
extended the approach of Mott et  al. (2000). A forward 
selection approach was used after an initial single (fixed 
effects) marker analysis to allow for multiple QTL and also 
for possible population structure. The analysis was then 
repeated by re-sampling the data 500 times and identify-
ing QTL for each re-sampling. The support for a QTL was 
determined by the fraction of times a QTL was identified 
in the 500 analyses. In the second approach of Kover et al. 
(2009), kinship information was included to account for the 
population structure, similar to that used by Malosetti et al. 
(2011) in a 3-way barley cross. The third approach used by 
Kover et al. (2009) was a hierarchical Bayes method. In the 
analyses of the data presented in Kover et  al. (2009), the 
results of the three approaches were very similar.

The methods of Mott et  al. (2000) and Kover et  al. 
(2009) are ultimately based on a genome scan, where each 
interval is tested independently for evidence of a QTL. 
Similarly, Huang et  al. (2012) use a simple interval map-
ping approach in a wheat MAGIC population to identify 
QTL for plant height and hectolitre weight. The use of such 
approaches has been shown to cause bias in bi-parental 
populations which has led to the development of compos-
ite interval mapping (CIM) (Zeng 1994; Jansen 1994) and 
multiple interval mapping (Kao et al. 1999). The methods 
of Mott et al. (2000) could be extended to CIM, however, 
a viable alternative is whole-genome average interval map-
ping (WGAIM). Described initially in Verbyla et al. (2007) 
and modified in Verbyla et  al. (2012), WGAIM has been 
demonstrated to outperform CIM and has been extended to 
multivariate situations (Verbyla and Cullis 2012).

The WGAIM approach for QTL analysis simultaneously 
incorporates all marker information in the analysis, over-
coming the need for repeated genome scans. In addition, 
WGAIM uses a forward selection approach greatly reduc-
ing the number of analyses. The approach allows for popu-
lation structure to be modeled through the inclusion of ped-
igree information and for any non-genetic effects, such as 
experimental design terms to be easily included. A simple 
random effects working model is used in which all inter-
vals are allowed to contain a possible QTL. Note that rather 
than using intervals, the markers themselves can be used in 
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the analysis, for example when the marker density is high; 
however, marker effects are assumed uncorrelated in the 
WGAIM approach whereas using intervals introduces a 
correlation between markers (Verbyla et al. 2007). A likeli-
hood ratio test of significance of the random effects work-
ing model is conducted to decide if selection of a putative 
QTL is warranted. This formulation means a threshold for 
QTL detection is readily available.

In this study, we extend WGAIM for use in MAGIC 
populations, describing a powerful method utilizing 
founder probabilities through a simulation study and a 

real data example. Two different approaches for con-
structing the necessary probabilities of inheriting the 
founder alleles for each line and each locus, namely the 
HMM approach and a three-point probability approach, 
are explored for use both at the markers and within inter-
vals. The simulation study is used to examine the Type I 
error rate, accuracy of predicted effect sizes and power of 
the method based on the structure of a real MAGIC wheat 
population. The simulation study demonstrated the power 
of the approach when identifying QTL; interestingly 
this included consistently identifying two QTL when 

Fig. 1   MAGIC population generation for four founders and two loci tracked through the process. The histograms in a and b present the prob-
ability that the marker represents each founder allele
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simulated in close linkage. Utilizing HMM probabilities 
either with an interval- or marker-based approach is a key 
recommendation, due to a high rate of false discoveries 
and biased effect sizes when using three-point probabili-
ties. A comparison with HAPPY (Mott et al. 2000) is also 
presented in the simulation study and it is shown in that 
the extension of WGAIM finds more QTL and has far 
fewer false positives than HAPPY. The paper finishes with 
the real data example, demonstrating the performance of 
the method for QTL analysis in a 4-way wheat MAGIC 
population.

Methods

Linear mixed model

Mixed models form the basis of our analysis. This allows 
inclusion of both fixed and random effects that are either 
part of the design of the trial generating the data or are 
required for an efficient analysis. Thus, if y is the n × 1 
vector of trait data, we suppose

where the design matrices X, Z0 and Zg are known. The 
first two reflect the experimental design of the trial and any 
other variation that requires modeling (Smith et  al. 2005, 
2006); τ is the vector of fixed effects parameters, and u0 
is a vector of random effects. The matrix Zg assigns each 
observation to one of ng varieties or genetic lines. Thus, ug 
is the ng × 1 vector of genetic effects; the model for ug is 
described below. Finally, e is the vector of residuals. The 
two terms uo and e are assumed to be distributed as

where the covariance matrices Go and R will depend on 
the study. It is important to model the non-genetic compo-
nents well  to determine the genetic effects of the model 
correctly.

Multi‑parent whole‑genome QTL analysis

The approach for MAGIC is based on the whole-genome 
average interval mapping (WGAIM) presented originally 
by Verbyla et  al. (2007) and more recently by Verbyla 
et al. (2012). The original WGAIM approach uses all inter-
vals on a linkage map in the analysis and a forward selec-
tion approach to choose putative QTL. It is a powerful 
approach for QTL analysis in bi-parental populations. We 
call the current approach multi-parent WGAIM or MPW-
GAIM. MPWGAIM involves using probabilities of inherit-
ing founder alleles for each potential QTL locus and each 

(1)y = Xτ + Z0u0 + Zgug + e

[

uo

e

]

∼ N

([

0

0

]

,

[

Go 0

0 R

])

line. This is the major modification of the original WGAIM 
approach; there are consequences in the outlier detection 
step, in the percentage of genetic variance accounted for by 
each putative QTL and in defining a measure of strength of 
the QTL.

While the original formulation of WGAIM involves 
using intervals, the observed markers can be used instead. 
The fundamental difference in doing so, is that the interval 
approach induces a simple correlation structure between 
marker effects, something to be expected if a QTL is linked 
to markers in a region of the genome; using the methods of 
this paper, WGAIM applied to markers does not incorpo-
rate correlation of marker effects.

The approach presented here allows for a QTL in every 
interval or at each marker on the linkage map; we will call 
the position the location, be it in the interval or at a marker. 
The QTL sizes are assumed to be a random effect and a 
test of significance of that random effect is conducted to 
determine if a putative QTL can be selected. If significant, 
an outlier detection technique is used to determine the most 
likely location for the putative QTL, otherwise the process 
terminates. If there is a selection, the selected putative QTL 
is added to the model as a random effect and the process 
continues. Thus, a forward selection process is conducted. 
At the end of the selection process the QTL sizes and their 
strength are assessed using methods appropriate for QTL 
taken as random effects, in particular the LOGP score, 
namely − log10 P where P is a probability reflecting the 
strength of the QTL, and percentage of genetic variance for 
each QTL can be determined and reported. The details of 
these steps are presented as follows.

Suppose, we have c linkage groups (or chromosomes) 
and rk markers on linkage group k, k = 1, 2, . . . , c. The 
genetic model for line i, i = 1, 2, . . . , ng, in the multi-parent 
(or founder) situation is given by

where r∗
k = rk − 1 if intervals are used and r∗

k = rk if mark-
ers are used in the analysis. Model (2) allows for a QTL 
at each location (interval or marker) on the linkage map. 
If there are nf founders, qikj is the nf × 1 vector which 
indicates the founder allele for line i for a potential QTL 
at location j on linkage group k. The elements of qikj are 
qikjl for l = 1, 2, . . . , nf and one of these is 1 and the rest are 
zero. Thus, if 1nf

 is a vector of ones,

The term akj is the vector of QTL sizes for location j on 
linkage group k, one for each founder, reflecting the 

(2)ugi =

c
∑

k=1

r∗
k

∑

j=1

qT
ikjakj + upi

qT
ikj1nf

=

nf
∑

l=1

qikjl = 1
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possible differential expression of a QTL for each founder. 
Note that most of the vectors of sizes will be zero. Our aim 
is to determine which locations have non-zero QTL sizes.

The last component of (2) is upi which is an independ-
ent polygenic or residual genetic effect, and typically 
upi ∼ N(0, σ 2

p ) although pedigree information can also be 
included, see Oakey et al. (2006). This term allows for pos-
sibly a large number of small QTL that cannot be detected 
individually.

Of course at the QTL the founder allele is unknown 
and hence which element of qijk is 1 is unknown. To over-
come this problem, the regression approach is used (Haley 
and Knott 1992; Martinez and Curnow 1992) for analysis. 
Thus, qijk is replaced by its expected value. Let pikj be the 
nf × 1 vector of founder probabilities for a potential QTL 
for line i at location j on linkage group k. That is, the lth 
element pikjl is the probability that the QTL allele is from 
founder l. Determining these probabilities is discussed 
below. First, note that

just like qikj. Second, qikj has a multinomial distribution 
with index number equal to 1 (the “sample” size) and prob-
abilities pikj, that is qikj ∼ Mn(1, pikj). Then

and if diag
(

pikj

)

 is a diagonal matrix with elements given 
by the vector pikj,

a result that will be used when finding percentage of vari-
ance explained by a QTL.

In accordance with the regression method, we consider 
the model

or in vector-matrix form

In addition, we assume a ∼ N(0, σ 2
a I); note that a has 

(r − c)nf elements (r =
∑c

k=1 rk) if intervals are used and 
rnf elements if markers are used.

Founder probabilities

To proceed with any analysis requires P and hence pikj. 
Two approaches for determining pikj are presented. The first 
involves three-point probabilities and extends the results 

pT
ikj1nf

=

nf
∑

l=1

pikjl = 1

E
(

qikj

)

= pikj

(3)var
(

qikj

)

= diag
(

pikj

)

− pikjp
T
ikj

ugi =

c
∑

k=1

r∗
k

∑

j=1

pT
ikjakj + upi

(4)ug = Pa + up

of Broman (2005); these results have been independently 
derived by the authors of the R (R Development Core Team 
2013) package mpMap (Huang and George 2011). The sec-
ond approach involves the use of a HMM as presented by 
Broman (2006) and implemented in the qtl package (Bro-
man et al. 2003, 2012) in R.

The assumptions underlying these developments are 
that we have inbred lines through selfing and we, therefore, 
focus on haplotypes of homozygous lines.

Three‑point probabilities: interval‑based approach

We begin with some notation. First, we consider a single 
line or individual and a single (generic) interval flanked 
by ML, the left-hand marker locus and MR, the right-hand 
marker locus. Let Q denote the potential QTL locus in the 
interval defined by ML and MR. Let the unobserved or hid-
den founder alleles be denoted by A1, A2, . . . , Anf

 where the 
marker or QTL locus index is suppressed. The observed 
marker score for ML is denoted by MLS with a similar defi-
nition for MRS. The unobserved allele at a marker or QTL 
has an additional index A, so that, for example, QA denotes 
the unobserved allele at the QTL locus Q, and MLA and 
MRA denote the unobserved allele at the left- and right-
hand marker locus, respectively.

Because QA is unknown, we use an interval analysis 
approach and condition on the observed marker phe-
notypes or scores for the flanking markers or loci, that 
is, MLS and MRS. The probabilities required for the 
QTL analysis involve the conditional probability that 
the QTL allele is one of the founder alleles, Ai, given 
the marker scores of the two flanking markers; that is 
Pr(QA = Ai|MLS = m1 ∩ MRS = m2). Let FL and FR 
denote the set of founder alleles indices (the index for 
Al is l) that are consistent with the marker scores m1 and 
m2, respectively. Then, the probability can be expressed 
as

To find these probabilities, we require the three-point haplo-
type probabilities Pr(MLA = Aj ∩ QA = Ai ∩ MRA = Ak).

Let the recombination fraction between ML and MR be 
denoted by r13, between ML and Q by r12 and between Q 
and MR by r23. Broman (2005) provides expressions for 
three-point haplotype probabilities when r12 = r23.

(5)

Pr(QA = Ai|MLS = m1 ∩ MRS = m2)

=
Pr(QA = Ai ∩ MLS = m1 ∩ MRS = m2)

Pr(MLS = m1 ∩ MRS = m2)

=

∑

j∈FL

∑

k∈FR
Pr(MLA = Aj ∩ QA = Ai ∩ MRA = Ak)

∑

j∈FL

∑

k∈FR
Pr(MLA = Aj ∩ MRA = Ak)

=

∑

j∈FL

∑

k∈FR
Pr(MLA = Aj ∩ QA = Ai ∩ MRA = Ak)

∑nf

i=1

∑

j∈FL

∑

k∈FR
Pr(MLA = Aj ∩ QA = Ai ∩ MRA = Ak)
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Following Broman (2005), the four- and eight-way 
cross three-point probabilities are built up in stages. Thus, 
the two-way two-point probabilities given by Haldane and 
Waddington (1931) and noted by Broman (2005) are used 
to find the two-way three-point probabilities. Using the 
notation of Broman (2005), we begin by defining a proto-
type for haplotypes that share the same probability. Thus, 
for the two-way cross, the three-point prototype A1A1A1 
corresponds to haplotypes in which all alleles originate 
from the same founder; if the founder alleles are A1 and A2

, these are the haplotypes A1A1A1 and A2A2A2 and the pro-
totype is simply the first possibility. Thus, the count of the 
number of haplotypes that share the same probability for 
prototype A1A1A1 in Table 1 is 2. For the two-way cross, 
there are four prototype probabilities (one more than the 
case r12 = r23). and all have count 2 because there are two 
possible haplotypes for each prototype.

The probabilities for the four-way and eight-way crosses 
are also given in Table  1 and follow using the arguments 
of Broman (2005). The details in that table depend on the 
structure of the MAGIC population. For example, the pro-
totypes, the haplotypes in the prototype, and their prob-
abilities for the four-way cross depend on the structure 
presented in Fig.  1, where founders 1 and 2 are crossed, 
founders 3 and 4 are crossed, and their respective F1 
progeny is crossed before the resulting lines are selfed. 
Thus, alleles A1 and A2 form an equivalence class due to 
the initial crossing as do alleles A3 and A4. This structure 
determines the number of haplotypes in a prototype. For 
example, there are four haplotypes for prototype A1A2A2 
because A1 is one of four possible founder alleles and once 
chosen the other allele must be the other allele in the same 
equivalence class. For prototype A1A3A4, the first allele 
can be chosen in four ways, and the next allele must come 
from the other equivalence class and may be chosen in two 
ways; the last allele is then the remaining allele in the other 
equivalence class. This results in eight possible haplotypes 
as given in Table  1. The same argument follows for the 
eight-way cross, where it has been assumed pairs of found-
ers are crossed initially to form four families. The resulting 
F1 lines are crossed between pairs of two families (fami-
lies 1 and 2 or families 3 and 4 only) to form F2 lines and 
then the resulting lines crossed between this second level of 
family structure to form F3 lines before selfing. Thus, for 
prototype A1A3A5 we have 8 times 2 times 4 possible hap-
lotypes, corresponding to 8 possible founders for the first 
allele, 2 possible alleles in the F2 structure, and lastly four 
possible alleles in the F2 structure in the crossing of fami-
lies 3 and 4. All the counts for the number of haplotypes in 
Table 1 are found in a similar manner.

The probabilities in Table 1 form the basis of one pos-
sible approach to calculations to be described below for use 
in QTL analysis.

HMM probabilities: interval‑based analysis

An alternative approach for calculating haplotype prob-
abilities is to use HMM as outlined by Broman (2006). The 

Table 1   Three-point probabilities for two-way, four-way and eight-
way crosses with selfing

Count indicates the number of haplotypes in the prototype. The four-
way cross probabilities depend on the two-way cross probabilities 
and the eight-way cross probabilities depend on the four-way cross 
probabilities

Prototype Count Probability

Two-way cross

A1A1A1 2
x1 = 1

2

{

1

2(1+r12)
−

r13

1+2r13
+ 1

2(1+2r23)

}

A1A1A2 2
x2 = 1

2

{

1

2(1+r12)
− 1

2(1+2r13)
+

r23

1+2r23

}

A1A2A2 2
x3 = 1

2

{

r12

1+r12
+

r13

1+2r13
−

r23

1+2r23

}

A1A2A1 2
x4 = 1

2

{

r12

1+r12
−

r13

1+2r13
+

r23

1+2r23

}

Four-way cross

A1A1A1 4 a1 = x1
(1−r12)(1−r23)

2

A1A1A2 4 a2 = x1
(1−r12)r23

2

A1A2A2 4 a3 = x1
r12(1−r23)

2

A1A2A1 4 a4 = x1
r12r23

2

A1A1A3 8 a5 = x2
(1−r12)

4

A1A3A3 8 a6 = x3
(1−r23)

4

A1A3A1 8 a7 = x4
(1−r13)

4

A1A2A3 8 a8 = x2
r12

4

A1A3A4 8 a9 = x3
r23

4

A1A3A2 8 a10 = x4
r13

4

Eight-way cross

A1A1A1 8 b1 = a1
(1−r12)(1−r23)

2

A1A1A2 8 b2 = a1
(1−r12)r23

2

A1A2A2 8 b3 = a1
r12(1−r23)

2

A1A2A1 8 b4 = a1
r12r23

2

A1A1A3 16 b5 = a2
(1−r12)

4

A1A3A3 16 b6 = a3
(1−r23)

4

A1A3A1 16 b7 = a4
(1−r13)

4

A1A1A5 32 b8 = a5
(1−r12)

4

A1A5A5 32 b9 = a6
(1−r23)

4

A1A5A1 32 b10 = a7
(1−r13)

4

A1A2A3 16 b11 = a2
r12

4

A3A1A2 16 b12 = a3
r23

4

A1A3A2 16 b13 = a4
r13

4

A1A2A5 32 b14 = a5
r12

4

A5A1A2 32 b15 = a6
r23

4

A1A5A2 32 b16 = a7
r13

4

A1A3A5 64 b17 = a8
1

8

A1A5A7 64 b18 = a9
1

8

A1A5A3 64 b19 = a10
1

8
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fundamental difference in using a HMM is that the whole 
linkage group is used in calculating probabilities at a par-
ticular location and hence the method is multi-point rather 
than three-point. We shall call the resulting probabilities 
HMM probabilities for the remainder of the paper. Suppose 
M1, M2, . . . , Mrk

 are the markers on chromosome k and Q 
is a putative QTL on that chromosome. Let MlS and MlA be 
the marker scores and genotypes, respectively, for marker 
locus Ml for an individual line, and QS and QA be the corre-
sponding quantities for the QTL; QS is missing. Similar to 
the three-point calculation, we require

Broman (2006) notes that the MlA form a (hidden) Markov 
Chain under the assumption of no interference. The cal-
culation of (6) can then proceed efficiently using the so-
called forward–backward equations for HMM, rather than 
the analog of (5); for details see Broman (2006). Thus 
multi-point probabilities can be found for any location on 
the chromosome for each individual line using the HMM 
approach.

Average interval mapping

The three-point and HMM probabilities depend on the 
unknown r12 and r23 and the known r13. In fact using Trow’s 
formula (Trow 1913), this reduces to one unknown recom-
bination fraction r12. Thus, for each potential QTL, and our 
model (4) allows for one in every interval, we have both 
a size and location that require estimation. To determine 
both turns out to be prohibitive and following Verbyla et al. 
(2007) we eliminate all the r12 as follows. Using Haldane’s 
distance

it is assumed the distance d12 is uniformly distributed on 
the full interval [0, d13]. Then, each of the four-way or 
eight-way probabilities is integrated over this prior dis-
tribution. The algebra is tedious for the three-point prob-
abilities and numerical integration is used (Piessens et al. 
1983). For the HMM case, numerical integration using the 
trapezoidal rule is used and requires a grid of distances 
or recombination frequencies across each interval and 
hence a decision on their spacing. This does not appear 
to be too crucial. In practice, a grid with a step of 0.1 cM 
is used uniformly across the map, but this will need to 
be reduced for maps where some distances are less than 
0.1 cM between markers. In addition, for narrow intervals, 
the probabilities will not vary greatly across the interval 
and so the number of evaluations need not be as big as for 
wider intervals where probabilities may change across the 
interval; thus there does not appear to be any need to vary 

(6)Pr(QA = Ai|M1S = m1s ∩ · · · ∩ MrkS = mrks).

d12 = −
1

2
log(1 − 2r12)

the width with varying density of markers. To evaluate the 
stability of the average probabilities, stepsizes of 0.1, 0.05 
and 0.01  cM were used to find average probabilities for 
the linkage map described in the Methods section. Com-
paring the 0.1 cM to the 0.05 cM stepsize, the maximum 
difference between the corresponding probabilities was 
0.00027 (found for an interval of total width 0.5 cM on the 
map, with smallest width 0.388 cM) with a relative error 
of 0.047 %. If a step of 0.01 cM was compared to a step-
size of 0.1 cM, the maximum difference was 0.00049 (for 
the same interval as with stepsize 0.05 cM) with a relative 
error of 0.085 %. The conclusion from this small examina-
tion was that using 0.1  cM was sufficient no matter how 
wide the interval.

The average probabilities need only be calculated once 
for each linkage map. The revised genetic model is given 
by

where PA is the ng × (r − c)nf matrix of average 
probabilities.

Haplotype probabilities: marker‑based analysis

The development above is based on interval mapping ideas 
and potential QTL in the interval. Alternatively, a marker-
based analysis could be carried out, where it is assumed 
putative QTL are at marker loci. The three-point prob-
ability calculations outlined above can be carried out at 
a marker locus, but there is additional information on the 
observed marker scores at the locus that can be used. We 
consider marker locus l on chromosome k as discussed in 
the HMM subsection above and consider the QTL allele 
indicator QA = MlA; thus the potential QTL is at marker l 
and it is sufficient to consider MlA. For locus l, let Fl denote 
the set of unobserved marker phenotype indices consistent 
with the observed marker score MlS. Then, the probability 
equivalent to the three-point probabilities (5) is for i ∈ Fl 
(so that the allele Ai is consistent with the marker score 
MlS = m2),

while for i /∈ Fl the probability is zero.
For the HMM based approach, the appropriate condi-

tional probability involves the full set of observed marker 
scores.  The HMM approach thus requires evaluation of 

(7)ug = PAa + up

(8)

Pr(MlA = Ai|Ml−1,S = m1 ∩ MlS = m2 ∩ Ml+1,S = m3)

=
Pr(MlA = Ai ∩ Ml−1,S = m1 ∩ MlS = m2 ∩ Ml+1,S = m3)

Pr(Ml−1,S = m1 ∩ MlS = m2 ∩ Ml+1,S = m3)

=

∑

j∈Fl−1

∑

k∈Fl+1
Pr(Ml−1,A = Aj ∩ MlA = Ai ∩ Ml+1,A = Ak)

∑

j∈Fl−1

∑

k∈Fl+1
Pr(Ml−1,A = Aj ∩ Ml+1,A = Ak)

=

∑

j∈Fl−1

∑

k∈Fl+1
Pr(Ml−1,A = Aj ∩ MlA = Ai ∩ Ml+1,A = Ak)

∑

i∈Fl

∑

j∈Fl−1

∑

k∈Fl+1
Pr(Ml−1,A = Aj ∩ MlA = Ai ∩ Ml+1,A = Ak)



1760	 Theor Appl Genet (2014) 127:1753–1770

1 3

In both these cases, the matrix PA is now of size ng × rnf 
and contains the probabilities for each marker and each 
individual line.

Test for a putative QTL

To determine if a putative QTL exists, two models are fitted 
using (1). These are

and

where a ∼ N(0, σ 2
a I(r−c)nf

). Note that with MAGIC popu-
lations the dimension (r − c)nf can potentially be very 
large and lead to the p > n problem. Verbyla et al. (2012) 
propose an approach that reduces the dimension for model 
fitting and that same approach can be used for MPW-
GAIM. This reduces the dimension for model fitting to ng, 
in the same manner as for the bi-parental situation; see the 
Appendix for details.

As for bi-parental crosses, a test of H0 : σ 2
a = 0 is used 

to establish if a putative QTL can be selected. A residual 
likelihood ratio test is conducted to test model (9) against 
(10). The test is non-standard and the null distribution is a 
mixture of a point probability of 0.5 at zero and half of a 
chi-square on one degree of freedom (Stram and Lee 1994). 
If H0 is rejected, there is sufficient potential QTL size vari-
ance to warrant the selection of a putative QTL. If H0 is 
retained, there is insufficient potential QTL size variance 
and hence the selection process is terminated.

Selection of a putative QTL

If H0 is rejected, an outlier statistic is used to select the 
most likely marker for the putative QTL, just like the bi-
parental situation (Verbyla et al. 2007, 2012). For interval 
(or marker) j on linkage group k, the alternative outlier 
model is given by

where Dkj is an (r − c)nf × nf matrix with a one for each 
founder in interval j on linkage group k and zero else-
where; if markers are used in the analysis Dkj is an rnf × nf 
matrix. This model inflates the additive effects by δkj which 
is assumed to follow a N(0, σ 2

akjInf
). The outlier statis-

tic is based on the score test (Cox and Hinkley 1974) of 
H0 : σ 2

akj = 0. If ãjkl is the best linear unbiased predictor 
(BLUP) of the size of a potential QTL effect for founder l 
in interval j on linkage group k with variance var

(

ãjkl

)

, the 
outlier statistic is given by

Pr(MlA = Ai|M1S = m1s ∩ · · · ∩ MlS = ms ∩ · · · ∩ MrkS = mrks)

(9)ug = up

(10)ug = PAa + up

(11)ug = PA(a + Dkjδkj) + up

so that the effects are summed over the founders. The sta-
tistic incorporates all the sizes for founder alleles at poten-
tial QTL.

The outlier statistic is calculated for each interval (or 
marker) and the interval (or marker) having the largest sta-
tistic is deemed to be the putative QTL interval (or marker).

The selected putative QTL is added as a random effect. 
Thus, the two models to be compared for possible selection 
of another putative QTL are, extending (9) and (10),

and

where PA1 is a matrix of probabilities (one for each founder 
for each line) for the first putative QTL (interval or marker) 
and PA,−1 is the matrix of founder probabilities for each 
line omitting the selected interval or marker probabilities. 
Note that the vector of the putative QTL size effects is 
assumed a1 ∼ N(0, σ 2

a1Inf
) and a−1 ∼ N(0, σ 2

a I(r−c−1)nf
).

Selection of additional QTL

The above process is continued in a forward selection man-
ner. Thus, after s selections of putative QTL the two models 
to be compared for possible selection of another putative 
QTL are

Note that aj ∼ N(0, σ 2
ajInf

) so that each putative QTL is 
assumed to come from its own distribution to reduce bias 
in the size of estimated effects (as in the bi-parental case).

Final assessment of significance of QTL

To provide the level of significance of each QTL, the 
approach outlined by Verbyla et  al. (2012) is followed. 
Under the normality assumptions of the linear mixed 
model, the approach involves the conditional distribution of 
the QTL size vector given the data, namely, 

where y2 is the component of the data free of fixed effects 
(Verbyla 1990). The mean of this conditional distribution 

(12)t2
jk =

∑nf

l=1 ã2
jkl

∑nf

l=1 var
(

ãjkl

)

(13)ug = PA1a1 + up

(14)ug = PA1a1 + PA,−1a−1 + up

(15)ug =

s
∑

j=1

PAjaj + up

(16)ug =

s
∑

j=1

PAjaj + PA,−sa−s + up

aj|y2 ∼ N(ãj, �PEV,j)
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is the BLUP of aj, that is the estimated size of the QTL ãj, 
and �PEV,j is the prediction error variance matrix (PEV) of 
aj. If �

−
PEV,j is a generalized inverse of �PEV,j, the distance 

measure

has a chi-squared distribution with nf − 1 degrees of free-
dom and if

a measure of the strength of the putative QTL is given by

Notice that this probability can be calculated for the QTL 
as a whole, that is for all founders together, and for indi-
vidual founders. This enables “significance” of QTL effects 
both at the overall and at the founder level to be reported. 
In this paper, the LOGP score, defined by

is used to give an indication of the strength of the putative 
QTL effects.

Percentage of genetic variance for a QTL

Lastly, the percentage of genetic variance accounted for by 
each putative QTL is of interest. This can be determined 
approximately as follows.

Once all putative QTL have been found, suppose s is the 
number of putative QTL. Rather than using (16), consider 
the genetic effect for line i in terms of the indicator variable 
qij for QTL j,

where pT
Ai,−s is the ith row of PA,−s. Then, the variance of 

ugi is given by

where var
(

qij

)

 is given by (3). We have ignored linkage 
because it is very difficult to allow for linkage in the calcu-
lations and the calculations are approximate in nature.

Each line has its own (different) variance because the 
variance depends on pij and pAi,−s and these can be differ-
ent for each i. To make progress, it is necessary to define an 
“average” line with (“average”) QTL indicator q̄j so that an 

d2
j = (aj − ãj)

T�−
PEV,j(aj − ãj)

c2
j = ãT

j �−
PEV,jãj

pj = Pr(d2
j > c2

j ).

LOGP j = − log10(pj)

ugi =

s
∑

j=1

qT
ij aj + pT

Ai,−sa−s + upi

var
(

ugi

)

=

s
∑

j=1

aT

j
var

(

qij

)

aj + σ 2

a
pT

Ai,−s
pAi,−s + σ 2

p

overall representative variance can be found. To do so, con-
sider the average founder probabilities, p̄j, defined as

Then, we define

In the same way, for the term involving the intervals (or 
markers) not selected, we simply average the founder prob-
abilities over all the lines for the non-selected intervals (or 
markers), p̄A,−s say. Then, the total variance of  an “aver-
age” line effect, u∗

g is

Equation (17) specifies an approximate total genetic vari-
ance. The percentage genetic variance attributed to the jth 
QTL is then

In practice the unknown sizes aj and variance components 
σ 2

a  and σ 2
p  are replaced by their estimates.

The definition of the “average” line is somewhat arbi-
trary, but it was chosen for simplicity of both concept and 
calculation. The true underlying percentage genetic vari-
ance will vary from line to line in the same way and hence 
suffers from the same lack of uniqueness. Given the defi-
nition used, the accuracy of the percentage variance will 
depend on the accuracy of the estimated QTL sizes to the 
true QTL sizes, and also on the accuracy of the estimated 
polygenic variance. This is because the averaging of the 
probabilities would be necessary to determine a meas-
ure of the percentage variance even if the true sizes were 
known. Thus assessing the accuracy of percentage genetic 
variance in the simulation study to be discussed below 
amounts to investigating the accuracy of the estimated 
QTL sizes.

Computation

The MPWGAIM approach has been implemented in the 
package mpwgaim in the R environment (R Development 
Core Team 2013) and is available from the authors. This 
package has dependencies on the R packages wgaim (Tay-
lor et  al. 2011), asreml (Butler et  al. 2011), qtl (Broman 
et al. 2003, 2012) and mpMap (Huang and George 2011). 

p̄j =
1

ng

ng
∑

i=1

pij.

var
(

q̄j

)

= diag
(

p̄j

)

− p̄jp̄
T
j .

(17)var
(

u∗
g

)

=

s
∑

j=1

aT
j var

(

q̄j

)

aj + σ 2
a p̄T

A,−sp̄A,−s + σ 2
p .

(18)PVj = 100
aT

j var
(

q̄j

)

aj

var
(

u∗
g

) .
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In particular, it is the power of asreml that allows the com-
plex models to be fitted.

Materials

Linkage map

A linkage map for a four-way cross in wheat was devel-
oped in CSIRO, Australia. An early version of the map is 
discussed in Huang et al. (2012), where DArTs and micro-
satellites were used, while Cavanagh et al. (2013) present a 
map based on SNPs. The map used in this paper is based on 
a combination of both sets of markers. The map was devel-
oped using the mpMap package as well as manual inter-
vention and consists of 5,763 markers, mostly SNPs, with 
755 DArTs and 39 multi-allelic microsatellites. These were 
grouped into the 21 chromosomes of wheat plus three addi-
tional linkage groups of markers. The full map is available 
in the supplementary material. A summary of the map is 
presented in Table 2 where the number of markers is pre-
sented for each chromosome together with the length of 
each chromosome in cM. We expect longer chromosomes 

because of increased recombination events in MAGIC 
designs. Chromosome 2B has a translocation and is the 
longest of the chromosomes because of an introgression of 
a wild relative. The total map length was 5,788 cM. Note 
that the D-genome was most sparse.

A histogram of the interval widths across the genome is 
presented in Fig. 2 (there were some large interval widths 
that were set at 21 to enable a useful histogram to be pre-
sented). The widths are predominantly under 5 cM.

Many of the markers were co-located at the same posi-
tion (see the supplementary material) on the map and are, 
therefore, not useful in a QTL analysis. Markers were 
therefore culled prior to QTL analysis to ensure non-zero 
recombination fractions between the remaining markers. 
Thus, the final map for QTL analysis consisted of 3,230 
markers (including 620 DArTs and 37 microsatellites).

Simulation study

To assess the performance of MPWGAIM, a simulation 
study was conducted. The linkage map used was based on a 
subset of the four-way wheat MAGIC map discussed above 
and presented in the supplementary material. The subset 
was created by removing the D-genome and all genomes 
for chromosomes 2 and 7 (and the small additional linkage 
groups Unlinked1, Unlinked2 and Unlinked3). The main 
reason for removing chromosomes was to avoid excessive 
computations in the simulation, while retaining a reason-
able number of chromosomes. The D-genome was removed 
because the number of markers was small, while chro-
mosome 2 contains a translocation and in the simulation 

Table 2   Summary of the linkage map for a four-way wheat MAGIC 
population

Chromosome Number of markers Length

1A 465 292

1B 345 326

1D 112 145

2A 364 307

2B 440 436

2D 123 172

3A 350 340

3B 217 258

3D 31 153

4A 357 363

4B 150 158

4D 25 106

5A 383 328

5B 560 379

5D 67 238

6A 444 253

6B 425 318

6D 49 229

7A 467 355

7B 281 312

7D 36 259

Unlinked1 37 14

Unlinked2 13 35

Unlinked3 22 12

Fig. 2   Histogram of interval distances (in cM) between markers for 
the four-way wheat MAGIC map. Some intervals were wider than 
20 cM and these have been grouped into a class at 21 cM
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study we wished to avoid complications. This left ten 
chromosomes for use in the simulation study. There were 
2,041 markers across the ten chromosomes remaining; see 
Table 2.

Two simulation studies were conducted; the genetic 
data were generated using the mpMap package (Huang 
and George 2011) in R (R Development Core Team 2013) 
using the reduced linkage map and the available pedigree 
for the 1,088 lines in the MAGIC population. First, a simu-
lation with no QTL was conducted to examine the Type I 
error rate (at least one QTL found when none exist) and 
the false discovery rate (number of QTL found when none 
exist). The model generating the data for analysis for each 
simulation was based on the simple model

for i = 1, 2, . . . , 1,088 and j = 1, 2. Thus there are two 
replicates of 1,088 genetic lines. The constant µ = 10, 
while ugi ∼ N(0, σ 2

g ) are assumed independent over i with 
σ 2

g = 0.5. This component of genetic variation is therefore 
assumed to arise from the so-called infinitesimal model. 
The residuals eij were simulated from independent standard 
normal variables. Thus, the heritability was 0.5. Five hun-
dred simulations were conducted.

Second, a power study was carried out when seven QTL 
were present. Single QTL were included on chromosomes 
1, 2 and 3 while two QTL were included on chromosomes 
4 and 5. No QTL were simulated for chromosomes 6 to 10. 
The sizes and locations of the QTL are given in Table  3. 
Again 500 simulations were conducted and the model was

where qij is the indicator variable for the founder allele 
for line i for QTL j, with sizes aj given in Table 3. Note 
that the heritability is either 73, 72 or 70 % depending on 
whether lines have QTL alleles from founders 2 to 4 for the 
QTL on chromosome 2 or alleles from founders 3 and 4 for 
the QTL on chromosome 3.

yij = µ + ugi + eij

yij = µ +

7
∑

j=1

qT
ij aj + ugi + eij

To assess the performance of MPWGAIM, a compari-
son with HAPPY (Mott et al. 2000) was also conducted for 
the power study. This involved running the publicly avail-
able software for each simulation, available at http://mus.
well.ox.ac.uk/magic/. First, HAPPY founder probabilities 
were determined using the software. These probabilities are 
different from the three-point probabilities and the HMM 
probabilities of Broman (2006). The number of effective 
generations was set to 4. To determine the genome-wide 
threshold (using a p value of 0.05) for determining puta-
tive QTL for each simulation, 1,000 permutations of the 
data were carried out, again as provided in the software. 
In addition, as inspection of 500 plots was not ideal (but 
the way such genome scans are normally interpreted), the 
output provided was slightly modified allowing for islands 
(stretches of chromosome above the genome-wide thresh-
old) where QTL were identified to be merged if there was 
one marker below the threshold that separated the islands; 
the largest peak was still declared the QTL for this com-
posite island. Lastly, the summary function was modified 
to allow detection of QTL in coupling as the existing soft-
ware did not provide for such determination. This involved 
searching for multiple peaks in an island.

In the power study, a QTL was deemed to be detected if 
either the interval or a chosen marker was 5 cM either side 
of the true QTL. This is more stringent than Broman and 
Speed (2002) and Verbyla et al. (2007, 2012). For HAPPY, 
a QTL was deemed to be found if the selected peak was in 
an interval that contained the point 5 cM either side of the 
true QTL position.

MAGIC experimental data

A wheat MAGIC population was grown in several experi-
ments conducted by Food Futures National Research Flag-
ship, CSIRO, Australia. One such field trial was conducted 
at Yanco, New South Wales Australia. The trial layout 
was 16 rows by 78 ranges in a partially replicated design 
(Cullis et al. 2006) but data were not collected on the first 
five ranges. The data collected in the trial involved 672 

Table 3   Specification for the 
power simulation

Seven QTL on chromosomes 1 
to 5 with sizes as specified for 
the founder alleles

QTL Chromosome Position (cM) Founder

1 2 3 4

1 1 141 0.354 −0.354 −0.354 0.354

2 2 160 0.354 −0.118 −0.118 −0.118

3 3 174 0.354 −0.354 0.000 0.000

4 4 187 0.354 −0.354 −0.354 0.354

5 4 207 0.354 −0.354 −0.354 0.354

6 5 77 0.354 −0.354 −0.354 0.354

7 5 97 −0.354 0.354 0.354 −0.354

http://mus.well.ox.ac.uk/magic/
http://mus.well.ox.ac.uk/magic/
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four-way MAGIC lines plus parents, and 205 other lines 
with varying replication, namely parents, standard wheat 
varieties and 121 eight-way lines. Several traits were of 
interest but here we focus on lodging, scored 1 (upright, no 
lodging) to 9 (horizontal, complete lodging) for each plot. 
The MAGIC population provides a diverse founder base 
in terms of yield and lodging is a limiting factor for yield. 
Thus the MAGIC population was seen as a natural platform 
for determining putative QTL for lodging and hence for 
one component of yield.

The statistical model that provides the baseline for the 
QTL analysis was given by (1) with

where the fixed effects design X allows for an overall mean 
µ and a linear row effect τ with associated explanatory vec-
tor r specifying the row position of each plot; there were no 
additional random effects in the experiment. The error was 
taken as e ∼ N(0, σ 2�r ⊗ �c), where �r and �c are both 
correlation matrices for an autoregressive process of order 
1, one in the row direction and the other in the range (or 
column) direction and ⊗ is the Kronecker product; see Gil-
mour et  al. (1997). This latter structure allows for spatial 
variation in the field. The parameter estimates for the base-
line model were τ = −0.10 with a standard error of 0.017, 
σ 2

g = 4.65, σ 2 = 1.84 and the spatial correlations ρr = 0.27 
and ρc = 0.39 in the row and column directions, respec-
tively. The heritability for lodging, using the approach of 
Oakey et al. (2006), was 0.65.

Results

Simulation study

The first part of the simulation study was to examine the 
Type I error and false discovery rate (FDR) when no QTL 
were present. The nominal type I error rate was set at 0.05 
and so it is expected that the probability of finding QTL 
when none were present would be around 0.05. For both 
marker and interval analyses using either three-point or 
HMM probabilities the test was found to be conservative. 
The realized Type I error rates were 0.036 and 0.044 for 

X = µ1n + τr

three-point and HMM probabilities for analyses based on 
markers or intervals. FDR values were higher, 0.064 and 
0.066 for three-point and HMM probabilities for mark-
ers and 0.064 and 0.062 for interval-based analysis. These 
figures reflect the fact that sometimes more than one 
QTL were found in a null analysis. The results are simi-
lar to those given in Verbyla et  al. (2007) for bi-parental 
populations.

The second component of the simulation study was to 
investigate the power of QTL detection in a setting that 
mirrors the actual MAGIC population developed in CSIRO, 
Australia. Thus, seven QTL were simulated for a popula-
tion of 1,088 lines for a linkage map consisting of 10 link-
age groups.

The rate of detection of each QTL (and the overall total 
across QTL) is presented in Table  4 for five methods of 
analysis; the methods were MPWGAIM using markers 
or intervals, using three-point or HMM probabilities and 
using HAPPY. QTL 1, 4 and 5 were detected in almost all 
simulations using MPWGAIM. For HAPPY QTL 4 was 
found 80 % of the time.

The results for QTL 2 and 3 are inconsistent across 
methods. For MPWGAIM analysis based on markers, 
using HMM probabilities is preferable whereas for inter-
vals the rates of detection are better when using the three-
point probabilities. For HAPPY the proportion of times 
QTL 2 and 3 were found was lower than MPWGAIM 
apart from the rate for QTL 3, where HAPPY is better than 
the marker-based MPWGAIM analysis using three-point 
probabilities.

The rates for QTL 6 and 7 are similar across all meth-
ods apart from HAPPY where there is very poor determina-
tion of these two QTL. Overall all MPWGAIM methods, 
marker or interval using three-point or HMM probabilities 
find about 6 out of the 7 QTL; the rates are very similar. 
In contrast, using HAPPY results in 4.6 QTL (on average) 
being found. Thus, MPWGAIM is an improvement on the 
analysis using HAPPY.

Note that differences between a marker-based analysis 
and an interval-based analysis are to be expected because 
the model using markers assumes marker effects are 
uncorrelated whereas using intervals induces a correlation 
between markers.

Table 4   Proportion of correct 
determination (within 5 cM of 
the true QTL position) for each 
of the seven QTL, together with 
a total out of seven for marker- 
and interval-based analysis 
using 3 point (3 pt) and HMM 
probabilities and for HAPPY

Method Probabilities QTL Total

1 2 3 4 5 6 7

Marker 3 pt 1.000 0.644 0.892 0.996 0.996 0.774 0.754 6.056

HMM 1.000 0.816 0.972 0.994 0.996 0.762 0.766 6.306

Interval 3 pt 1.000 0.870 0.984 0.998 0.994 0.812 0.656 6.314

HMM 1.000 0.818 0.982 1.000 0.994 0.730 0.734 6.258

HAPPY HAPPY 0.974 0.614 0.914 0.800 1.000 0.156 0.172 4.630
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Table 5 gives two-way tables for the four combinations 
of approaches based on MPWGAIM and HAPPY for the 
two QTL on chromosome 4 that are in coupling and the 
two QTL on chromosome 5 that are in repulsion. For the 
two QTL in coupling, all MPWGAIM methods basically 
find the two QTL in almost every simulation. This is in 
contrast to the bi-parental situation (Verbyla et  al. 2007, 
2012) where finding QTL in coupling is very difficult. For 
HAPPY, using the modified summary that allows for mul-
tiple peaks in an island to be recognized, both QTL were 
detected in 400 of the 500 simulations. Interestingly, in the 
other 100 simulations the second QTL (in terms of posi-
tion on the linkage group) was detected. The first QTL was 
never detected on its own.

For QTL in repulsion, the rates are much lower as shown 
in Table 5. First, the results for marker and interval are very 
similar within the three-point and HMM probability cases 
for MPWGAIM. The rate at which both QTL were detected 
was higher for the HMM approach, but that approach failed 
to detect either QTL at a higher rate than using three-point 
probabilities. In addition, using HMM probabilities essen-
tially leads to both or neither QTL being detected, unlike 
the three-point probabilities where single QTL were some-
times found. In comparison, finding QTL in repulsion 
appears very difficult using HAPPY.

Perhaps the biggest differences arose in the proportions 
of false positives found using the methods; the details are 
presented in Table 6. It is clear that using MPWGAIM and 

three-point probabilities leads to high numbers of false 
positives, effectively one per simulation. In contrast, using 
HMM probabilities in MPWGAIM leads to very low rates 
of false positives. The rates for intervals are marginally 
lower than when using markers. HAPPY resulted in many 
false positives, on average 5.7 false positives per simula-
tion. It is not clear why using three-point probabilities leads 
to a higher rate of false positives, but it is conjectured that 
the probabilities are not accurate when limited scores are 
available for the markers and there are multiple founders. 
This is overcome when using probabilities based on the 
HMM because effectively haplotypes across each link-
age group are being used. The high rates for HAPPY are 
puzzling because the chosen thresholds were calculated 
using permutation; the determination was based on the out-
put that was produced from analysis using HAPPY. Note, 
however, that the false positives for HAPPY are on the 
linkage groups which contain QTL. The rate of false posi-
tives on linkage groups not containing QTL is lower than 
MPWGAIM.

One feature that arose in the simulations when using 
MPWGAIM was finding multiple QTL in the 5 cM window 
each side of the QTL. The number of times more than one 
QTL was found as given in Table 7. Again the clear pattern 
is that using three-point probabilities leads to confounding 
of potential QTL for both marker and interval analyses and 
large numbers of multiple QTL are found. The rates when 
using HMM probabilities are very small.

Table 5   Two by two tables for 
QTL in repulsion and coupling 
containing the number of times 
QTL are selected for marker- 
and interval-based analysis 
using 3 point (3 pt) and HMM 
probabilities and for modified 
HAPPY

In the table, D stands for 
detected, while D̄ stands for not 
detected

Method

Marker
3pt

Marker
HMM

Interval
3pt

Interval
HMM

HAPPY
HAPPY

D̄ D D̄ D D̄ D D̄ D D̄ D

Coupling

 D̄ 0 2 1 1 0 3 0 3 0 100

 D 2 496 2 496 1 496 0 497 0 400

Repulsion

 D̄ 83 40 117 0 85 87 131 2 340 74

 D 30 347 2 381 9 319 4 363 82 4

Table 6   Proportion of false positives over 500 simulations for each QTL chromosome and chromosomes 6–10 which contained no QTL, with 
totals across all chromosomes for marker- and interval-based analysis using 3 point (3 pt) and HMM probabilities for MPWGAIM, and HAPPY

Method Probabilities Chromosome Total

1 2 3 4 5 6–10

Marker 3 pt 0.046 0.288 0.296 0.080 0.528 0.148 1.186

HMM 0.024 0.030 0.030 0.024 0.006 0.054 0.168

Interval 3 pt 0.028 0.062 0.186 0.088 0.530 0.118 1.012

HMM 0.026 0.012 0.018 0.010 0.008 0.050 0.124

HAPPY HAPPY 2.438 0.482 0.804 1.572 0.366 0.012 5.674
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Lastly, the estimated size of effect for QTL was exam-
ined across all simulations and the means and empirical 
standard errors are presented in Table 8. For each QTL the 
true sizes are presented for each founder together with the 
results found for the simulations where the QTL was found. 
In general, the means are very similar across all methods. 
Two points of difference that arise are for QTL on chromo-
some 3 and the two QTL on chromosome 5. The QTL on 
linkage group 3 had founders 3 and 4 with sizes equal to 
zero. Using HMM probabilities results in very small means 
across simulations but when using three-point probabilities 
the mean sizes are quite different from zero. Using HAPPY, 
one mean size was close to zero while the other was not. 
On linkage group 5, the means for QTL 6 are negatively 
biased when using three-point probabilities while for 
QTL the mean probabilities for founders 2 and 4 are very 
close to zero. The means for HAPPY are very different to 
those simulated across all founders. In contrast the results 
for analyses using the HMM probabilities appear consist-
ent with the true probabilities. It is not clear why sizes of 
effects for analysis based on three-point or HAPPY prob-
abilities sometimes are quite different to those simulated. 
We can only conjecture that for the particular founder, 
those probabilities are not well estimated and do not dis-
criminate the lines very well. Hence their small estimated 
sizes. Lastly, standard errors vary in their sizes across the 
methods and there is no consistent pattern.

Because the QTL sizes tend to be well estimated using 
MPWGAIM with HMM probabilities, the percentage vari-
ance calculations outlined in the methods section are likely 
to be accurate and will provide a realistic appraisal of the 
contribution of each QTL to the genetic variance.

Analysis of MAGIC experimental data

The analysis of lodging data from the field trial discussed in 
the Materials section was conducted using the approaches 
of the paper.

Putative QTL were found for the lodging data using both 
interval- and marker-based MPWGAIM analyses, with 
both three-point and HMM probabilities as outlined in the 
Methods. Results are presented only for the interval-based 
analysis using HMM probabilities because of the findings 
in the simulation study. However, the corresponding results 

for a marker-based analysis using HMM based probabili-
ties and also using three-point probabilities can be found in 
the Supplementary online material.

For the interval-based analysis using HMM probabilities 
10 putative QTL were found; see Table 9. The two largest 
QTL (in terms of percentage variance and LOGP score) are 
the Green Revolution height reducing genes Rht-B1b and 
Rht-D1b (formerly known as Rht1 and Rht2). Rht-D1b was 
placed at the start of chromosome 4D but had many miss-
ing values for the four-way lines and a neighboring region 
was selected in the QTL analysis. The remaining putative 
QTL explain small percentages of the genetic variance but 
have reasonable LOGP scores and the size of QTL effects 
suggest these additional QTL would be useful in improving 
lodging if the appropriate alleles were selected.

If the supplementary material is examined it can be seen 
that for the marker-based analysis using HMM probabili-
ties 12 QTL are found with 9 being essentially the same as 
for the interval analysis. The analyses based on the three-
point probabilities lead to 13 and 12 putative QTL for the 
interval- and marker-based approaches, respectively, again 
with 9 in common with the results in Table  9. Thus, the 
results are very similar across the approaches.

Discussion

An important aspect of QTL analysis in MAGIC popu-
lations is that marker scores may not be fully informa-
tive because there are multiple founders. The WGAIM 
approach of Verbyla et  al. (2007) has been extended to a 
multi-parent population (MAGIC) with inter-crossing and 
selfing in a natural way using probabilities of inheriting 
founder alleles.

The current approach is based on Verbyla et al. (2012) 
where QTL effects are assumed random rather than 
fixed. This reduces the bias of estimated QTL sizes. The 
approach allows assessment of the impact of the putative 
QTL through a probability value of the extremity of the 
impact, through percentage genetic variance and a LOGP 
score. For an analysis using markers, the use of three-point 
and HMM probabilities for founder effects was incorpo-
rated using an averaging approach akin to the original 
WGAIM method.

Table 7   Number of times in the 
500 simulations that two QTL 
are selected in the 5 cM window 
for each QTL for marker- and 
interval-based analysis using 
3 point (3 pt) and HMM 
probabilities

Method Probabilities QTL Total

1 2 3 4 5 6 7

Marker 3 pt 5 0 17 1 8 3 71 105

HMM 4 0 0 5 1 0 0 10

Interval 3 pt 1 0 42 2 9 2 47 103

HMM 2 0 0 2 0 0 0 4
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An important component of MPWGAIM is the dimen-
sion reduction that allows large problems to be analyzed 
efficiently. The dimension is reduced to the number of lines 
having marker information and this can be much smaller 

than the effective dimension in multi-parent situations. 
There are relatively simple results that allow the required 
calculations (of the outlier statistics) to be carried out. 
These ideas are being extended to both the multivariate 

Table 8   Means and standard 
errors of the mean for each 
QTL and each founder size 
for marker- and interval-based 
analysis using 3 point (3 pt) and 
HMM probabilities and using 
HAPPY

Founder

QTL Method Probabilities 1 2 3 4

Mean SE Mean SE Mean SE Mean SE

1 Simulated 0.354 −0.354 −0.354 0.354

Marker 3 pt 0.345 0.0012 −0.345 0.0012 −0.345 0.0012 0.345 0.0012

Marker HMM 0.368 0.0026 −0.336 0.0021 −0.357 0.0022 0.326 0.0026

Interval 3 pt 0.350 0.0012 −0.350 0.0012 −0.350 0.0012 0.350 0.0012

Interval HMM 0.375 0.0026 −0.340 0.0021 −0.360 0.0022 0.325 0.0026

HAPPY HAPPY 0.361 0.0013 −0.346 0.0027 −0.377 0.0016 0.362 0.0013

2 Simulated 0.354 −0.118 −0.118 −0.118

Marker 3 pt 0.324 0.0025 −0.116 0.0019 −0.119 0.0016 −0.090 0.0024

Marker HMM 0.339 0.0022 −0.132 0.0025 −0.105 0.0020 −0.102 0.0022

Interval 3 pt 0.340 0.0022 −0.121 0.0022 −0.119 0.0015 −0.100 0.0021

Interval HMM 0.347 0.0021 −0.134 0.0025 −0.107 0.0020 −0.106 0.0022

HAPPY HAPPY 0.349 0.0021 −0.078 0.0020 −0.139 0.0018 −0.132 0.0016

3 Simulated 0.354 −0.354 0.000 0.000

Marker 3 pt 0.296 0.0024 −0.106 0.0015 −0.082 0.0025 −0.109 0.0014

Marker HMM 0.339 0.0023 −0.324 0.0031 0.000 0.0023 −0.016 0.0030

Interval 3 pt 0.297 0.0039 −0.129 0.0016 −0.038 0.0060 −0.129 0.0016

Interval HMM 0.345 0.0023 −0.328 0.0032 0.000 0.0023 −0.017 0.0031

HAPPY HAPPY 0.300 0.0055 −0.153 0.0014 0.006 0.0035 −0.153 0.0014

4 Simulated 0.354 −0.354 −0.354 0.354

Marker 3 pt 0.406 0.0033 −0.350 0.0027 −0.364 0.0022 0.308 0.0032

Marker HMM 0.343 0.0026 −0.358 0.0027 −0.334 0.0024 0.349 0.0027

Interval 3 pt 0.384 0.0021 −0.347 0.0030 −0.410 0.0031 0.373 0.0018

Interval HMM 0.364 0.0027 −0.376 0.0028 −0.352 0.0026 0.364 0.0029

HAPPY HAPPY 0.384 0.0055 −0.447 0.0043 −0.321 0.0074 0.384 0.0054

5 Simulated 0.354 −0.354 −0.354 0.354

Marker 3 pt 0.300 0.0016 −0.314 0.0027 −0.286 0.0023 0.300 0.0016

Marker HMM 0.322 0.0025 −0.328 0.0026 −0.333 0.0025 0.339 0.0025

Interval 3 pt 0.300 0.0017 −0.312 0.0028 −0.288 0.0024 0.300 0.0017

Interval HMM 0.308 0.0025 −0.321 0.0028 −0.318 0.0026 0.331 0.0026

HAPPY HAPPY 0.433 0.0014 −0.417 0.0024 −0.448 0.0032 0.433 0.0014

6 Simulated 0.354 −0.354 −0.354 0.354

Marker 3 pt 0.299 0.0036 −0.221 0.0039 −0.289 0.0041 0.212 0.0048

Marker HMM 0.338 0.0032 −0.312 0.0029 −0.349 0.0034 0.322 0.0034

Interval 3 pt 0.294 0.0035 −0.244 0.0043 −0.308 0.0037 0.257 0.0043

Interval HMM 0.345 0.0033 −0.326 0.0031 −0.355 0.0035 0.336 0.0035

HAPPY HAPPY 0.140 0.0035 −0.070 0.0054 −0.203 0.0040 0.133 0.0052

7 Simulated −0.354 0.354 0.354 −0.354

Marker 3 pt −0.283 0.0040 0.011 0.0035 0.260 0.0074 0.011 0.0035

Marker HMM −0.339 0.0030 0.309 0.0034 0.346 0.0033 −0.316 0.0037

Interval 3 pt −0.295 0.0038 0.022 0.0040 0.251 0.0080 0.022 0.0040

Interval HMM −0.341 0.0031 0.318 0.0036 0.345 0.0033 −0.322 0.0038

HAPPY HAPPY −0.225 0.0033 0.003 0.0028 0.220 0.0040 0.002 0.0029
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situation (multi-trait, multi-environment and multiple treat-
ments) and the analysis of epistatic interactions in both bi-
parental and multi-parent situations where the dimension 
reduction is vital.

An important issue is the difference between a marker-
based and an interval-based analysis. Verbyla et al. (2007) 
show that using intervals, the underlying marker effects are 

correlated. This is to be expected because markers that are 
in close linkage with a QTL would be expected to exhibit 
similar association with the trait. In contrast, using a 
marker-based analysis assumes independent marker effects 
(for the models of this paper). This will lead to differences 
in analysis of QTL, though we might expect similar results 
for both methods as was found in the simulation study and 

Table 9   Putative QTL for the 
MAGIC lodging data found 
using intervals and HMM 
probabilities

Chr Left dist Right dist Founder Size Founder Prob %var LOGP

Prob LOGP

1D 59.15 72.88 Yitpi 0.408 0.052 1.29 0.039 1.2 1.41

Chara −0.199 0.233 0.63

Baxter 0.06 0.411 0.39

Westonia −0.309 0.129 0.89

2B 262.54 263.04 Yitpi −0.47 0.041 1.39 0.068 1.2 1.17

Chara 0.159 0.302 0.52

Baxter 0.18 0.302 0.52

Westonia 0.082 0.412 0.38

3A 84.35 86.92 Yitpi −0.442 0.094 1.03 0 3.7 4.41

Chara −0.316 0.199 0.7

Baxter −0.068 0.423 0.37

Westonia 0.736 0.012 1.92

3A 183.94 187.57 Yitpi −0.488 0.037 1.43 0.007 1.9 2.13

Chara 0.03 0.457 0.34

Baxter 0.471 0.044 1.35

Westonia −0.067 0.406 0.39

3A 309.24 309.74 Yitpi 0.706 0.011 1.95 0 3.4 4.36

Chara −0.5 0.053 1.28

Baxter −0.161 0.298 0.53

Westonia −0.125 0.346 0.46

4B 120 121.01 Yitpi 0.843 0.049 1.31 0 15 17.78

Chara −0.487 0.18 0.75

Baxter −1.469 0.003 2.58

Westonia 0.785 0.063 1.2

4D 11.04 18 Yitpi −1.804 0.002 2.77 0 29.7 30.37

Chara 1.348 0.013 1.89

Baxter 1.03 0.046 1.34

Westonia −1.193 0.028 1.55

5B 111.53 113.05 Yitpi 0.237 0.189 0.72 0.007 1.8 2.15

Chara 0.389 0.076 1.12

Baxter −0.256 0.177 0.75

Westonia −0.42 0.059 1.23

7B 196.94 197.45 Yitpi 0.618 0.014 1.86 0.001 2.4 3.17

Chara −0.08 0.391 0.41

Baxter −0.317 0.136 0.87

Westonia −0.282 0.167 0.78

Unlinked2 31.06 32.07 Yitpi 0.053 0.41 0.39 0.018 1.2 1.75

Chara −0.262 0.134 0.87

Baxter −0.234 0.155 0.81

Westonia 0.407 0.037 1.43
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the example. For an analysis based on markers, it may be 
preferable to propose a correlated set of effects rather than 
an uncorrelated set. This was not explored for the current 
paper, but is a general issue to be considered.

The simulation study showed that MPWGAIM was very 
good at finding QTL, whether interval or marker based, 
and whether three-point or HMM probabilities were used. 
However, the latter probabilities seemed to produce more 
unbiased QTL size effects than the corresponding effects 
found when using three-point probabilities. In addition, 
false positive rates were very low when using HMM proba-
bilities and unacceptably high when using three-point prob-
abilities. These latter probabilities tended to give rise to 
linked spurious QTL close to the true QTL (which was also 
found). We conjecture that the reason for the increased rate 
of false positives when using three-point probabilities is the 
reduced information content of three-point haplotypes for 
multiple founders in comparison to using HMM methods 
where the effective haplotype length is the entire linkage 
group.

The comparison with HAPPY (Mott et al. 2000) in the 
power simulation study showed that MPWGAIM detects 
more true QTL, and that for HAPPY it was difficult to 
detect QTL in repulsion. In addition, there were many false 
positives when using HAPPY. MPWGAIM outperforms 
HAPPY.

The lodging data for a wheat MAGIC 4-way popula-
tion was analyzed and confirmed the similarity of analyses 
using intervals or markers. There have been several papers 
in which QTL for lodging have been determined for bi-
parental populations. Keller et al. (1999) consider lodging 
data at three environments (analyzed separately) and find 
13, 8 and 8 QTL with five in common across all environ-
ments and three in common at two environments. Of the 
QTL found in our analysis, it appears that one of the QTL 
on 3A, and the QTL on 5B and 7B may be in the same 
region as those found by Keller et al. (1999). The remain-
der are different. Verma et al. (2005) consider analysis over 
2 years of data (separate analyses for each year) and found 
QTL on 4B, 4D, 6D and 7D in both years and on 2B and 
1D in 1 year. The QTL on 4B and 4D are the height genes, 
also found in our analyses. Smaller plants are less prone to 
lodging. QTL on 2B and 1D were found in our analyses 
and may correspond to those found by Verma et al. (2005). 
In their study, McCartney et al. (2005) find three QTL, on 
4B, 4D and 3D, so again the height genes play an important 
role. Lastly, Marza et al. (2006) find three QTL on 1B, 4AL 
and 5A, none of which were found in our analyses.

In conclusion, MPWGAIM is a powerful approach for 
QTL analysis that performed well in the simulation study. 
MPWGAIM is a better method than HAPPY, again based 
on the simulation study. Using HMM probabilities leads 
to low rates of false positives and so the recommendation 

based on this paper is to use HMM probabilities with either 
the interval or marker-based MPWGAIM approach.
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Appendix

The size of PA and hence the number of effects in a, 
(r − c)nf for interval-based analyses and rnf for marker-
based analyses, can be very large. This usually results in 
the number of effects required to be estimated being big-
ger than the sample size n. Verbyla et  al. (2012) propose 
an approach that reduces the dimension for model fitting 
and the same approach can be used for MPWGAIM. This 
reduces the dimension for model fitting to the number of 
lines ng, in the same manner as for the bi-parental situation.

If a∗ ∼ N(0, σ 2
a Ing), the model

results in the same variance model as (7), but the number 
of effects in a∗ equals the number of lines ng. Then as in 
Verbyla et al. (2012), the BLUPs of a∗ and a, denoted by ã∗ 
and ã respectively, are related by

with variance matrix

and only the diagonal elements of this matrix are required 
in the calculation of the outlier statistics (12). Thus, an effi-
cient computational approach exists for high-dimensional 
situations.

References

Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, Dilla-
Ermita CJ, Tung CW, McCouch S, Thomson M, Mauleon R, 
Singh RK, Gregorio G, Redoa E, Leung H (2013) Multi-parent 
advanced generation inter-cross (MAGIC) populations in rice: 
progress and potential for genetics research and breeding. Rice 
6:11

Broman K (2005) The genomes of recombinant inbred lines. Genetics 
169:1133–1146

Broman KW (2006) Use of hidden Markov models for QTL mapping. 
Technical report. John Hopkins University, Department of Bio-
statistics, working paper 125

Broman KW, Speed TP (2002) A model selection approach for the 
identification of quantitative trait loci in experimental crosses. J R 
Stat Soc Ser B 64:641–656

ug = (PAPT
A)1/2a∗ + up
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